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A weak additional sinusoidal perturbation is applied to the periodically forced nonlinear oscillator to sup-
press chaos. Numerical simulations show that the phase difference between the two sinusoidal forces plays a
very important role in controlling chaos. When the frequencies of these forces deviate from the resonance
condition slightly, a different type of intermittency, alternation from regular motion to chaotic motion~called
breather here!, is observed. If the phase difference follows a Wiener process, conventional intermittency is
observed.

PACS number~s!: 05.45.1b

I. INTRODUCTION

The presence of chaos both in nature and in man-made
devices is very common and has been extensively demon-
strated in recent decades. Quite frequently chaos is a benefi-
cial feature as in some chemical, heat, and transport prob-
lems @1#. However, in many other situations chaos is an
undesirable phenomenon leading to irregular performance
and possible catastrophic failures. The problem of control-
ling chaos~converting the chaotic motion to regular motion!
has received considerable attention in recent years@2–20#.
The controlling methods recently developed can be roughly
classified into two categories: feedback and nonfeedback
methods. Feedback methods@3–6# suppress chaos by stabi-
lizing orbits already existing in the systems. Nonfeedback
methods@7,8# apply small driving forces, or small modula-
tions, directly to system parameters to suppress chaos; they
modify the underlying dynamics and make stable solutions
appear.

A typical nonfeedback control method can be generally
modeled as

xẆ5FW „xW ,B cos~vt !,a cos~Vt1w!…, ~1!

where the first periodic force drives the system to the chaotic
state while the second one is a weak periodic force sensi-
tively modifying the system dynamics. This kind of control
has been investigated by many authors analytically@7#, nu-
merically @8,11#, and experimentally@12,13#. However, to
our knowledge, most of the previous studies of controlling
chaos in such nonautonomous systems simply set phase
w50; the role played by the phase differencew has not been
carefully studied to our knowledge. In this paper we will
numerically investigate the effect of phase on suppressing
chaos in detail along the line suggested in Ref.@15#.

This paper is organized as follows. In Sec. II, we describe
the results of numerical stimulation about the effect of phase
on controlling chaos by applying sinusoidal perturbation to
the Duffing equation. In Sec. III we describe the phenom-
enon of a different kind of intermittency, called breather in
our paper, induced by frequency detuning. In Sec. IV, we
discuss briefly the phase effect in multifrequency systems.

All the results in this presentation are based on numerical
simulations. Some heuristic explanations are provided for the
breather phenomenon.

II. PHASE EFFECT ON SUPPRESSING CHAOS

In this section, we consider the problem of controlling
chaos of the Duffing oscillator by a weak additional periodic
perturbation,

ẋ5y
~2!

ẏ52dy2x31B cosvt1aB cos~Vt1w!.

With a50 this equation is a usual Duffing oscillator~so-
called soft spring oscillator!, extensively investigated in non-
linear science such as chaos, plasma oscillations, and engi-
neering problems@21#. d is a dissipation parameter and
B cosvt is the first forcing driving the system to the chaotic
state. Apart from a single force, the effect of a number of
competing external forcing frequencies on the region of
chaos in the quasiperiodically forced Duffing oscillator has
been investigated@22,23# recently. In this paper, we study
the effect of suppressing chaos by the second weak force.
Here,a is the amplitude of the perturbation and is assumed
to be small, e.g.,a!1. For certain combinations of param-
eters chaotic solutions can be obtained. Figure 1 shows the
bifurcation of the Duffing equation@i.e., Eq.~2! with a50#
versus B ~d50.3, v51; these two parameters are fixed
throughout this paper!. We have adopted a fifth-order Runge-
Kutta method to integrate Eq.~2! in the computer simulation.
Data in Fig. 1 and throughout the presentation are taken on
the following surface of section:x50 andy,0; i.e., the sur-
face of section is located on the negativey axis. Since there
are multiple attractors coexisting for Eq.~2! in the parameter
region investigated, we integrate Eq.~2! by employing the
conventional technique that the terminal point of the orbit
integrated for the former parameter is prepared as the starting
point of the simulation for the sequential parameter to keep
uniqueness of the results.

In Fig. 2 we show the bifurcation with respect toa for
B58.85,V53, w50. The results show thata plays a role as
an additional relevant parameter for bifurcation and chaos.
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This point has been investigated in some previous papers,
such as Refs.@7# and @8#. An interesting point is that in the
small a region the external control forcing prefers to sup-
press chaos via inverse period-doubling bifurcation. How-
ever, in order to reach the inverse period-doubling bifurca-
tion threshold, one has to vary the amplitude of the second
forcing to a large extent, i.e., up toa>0.25 in Fig. 2. This
observation is rather disappointing in the sense of controlling

chaos, since one has to apply a large external forcing to
remove chaos. Without the perturbationaB cos(Vt1w! one
can also achieve the same purpose of suppressing chaos in
the original Duffing equation by changing the parameter, say
B, in the same extent. By controlling, one expects that a
small external control perturbation~in comparison with the
original driving! should be able to bring the system out of the
chaotic region; that is the main focus of this presentation.

FIG. 1. Bifurcation diagrams of Eq.~1! with asymptoticy plotted againstB. g50.3,v51 ~these parameters are taken in all the following
figures!, a50. The data are taken on the surface of section located on the negativey axis.

FIG. 2. Asymptoticy plotted against the perturbation intensitya. B58.85,w50, V53.
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Now, let us examine how the phase difference of the two
forcings influences the bifurcation of the system. In Fig. 3,
we show the bifurcation with respect tow. The values of the
parametersB andV are the same as those in Fig. 2. It is
surprising that with the perturbation amplitude fixed at a
rather small value the phasew plays a very important role in
suppressing chaos in each case. We find a wide range of
phase producing regular motion, which connects chaos by
period doubling or inverse period doubling. This observation

indicates that the phasew is a sensitive parameter for the
system bifurcation; then one can suppress chaos by adding a
weak external forcing with a proper phase to the system. The
method of controlling chaos by adjusting the phase differ-
ence can be termed as phase control.

The above phase control concept has been drawn for cer-
tain isolated parameter combinations. To confirm this idea,
we test the phase effect in wider parameter regions. First we
fix a50.06 andV53 and consider the phase diagram in the

FIG. 3. Asymptoticy plotted against the phasew for B58.85,a50.075,V53.

FIG. 4. Regular motion region~blank! and chaotic motion~including periodic windows! region~shaded! in theB-w plane witha50.06;
the boundary is defined by the bifurcation lines from period 4 to period 8.
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B-w plane. The numerical result is shown in Fig. 4, where we
classify only regular motion~period 1,2,4, blank region! and
chaotic motion~including period 8,16,... and other periodic
windows, shaded region!. In Fig. 4, the regular region, which
leaves the chaotic region by inverse period bifurcation, is a
connected region. It is extremely interesting that the distri-

bution of regular and chaotic regions strongly depends on the
phase difference. For certainw ~e.g., 3.5,w,4.5 in the fig-
ure!, the chaos region completely vanishes in the entireB
range where chaos exists without the second forcing~chaos
is entirely wiped out rather than slightly shifted aside in this
phase region!. It is emphasized that in Fig. 4 the forcing

FIG. 5. The asymptoticy plotted againstB. a50.075,V53, andw53.53. All attractors are presented. Two attractors coexist in
6,B,13, three coexist in 8.3,B,11.2. In the whole region fromB56 toB513, chaos for all attractors is completely ruled out by applying
a weak forcing.

FIG. 6. At w50, blank region corresponds to regular states, shaded and black regions indicate chaotic states~including periodic
windows!. The black region is the uncontrollable region even when phase differencew is taken into account. The black region considerably
shrinks from the shaded region, which demonstrates the efficiency of phase control.
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amplitude is rather small, much smaller than the threshold in
Fig. 2 ~a'0.25! wherew50 is taken. In Fig. 5, we takea
andV the same as in Fig. 4 and fixw53.53 and plot the
bifurcation diagram with respect toB. Note that the way to
produce Fig. 5 is different from that for all the above figures.
Here for eachB we try different initial conditions and ex-

plore all attractors. We can clearly see that there are two
attractors coexisting in 6,B,13 and three in 8.3,B,11.2.
It is remarkable that only regular motions appear and the
whole chaotic region is eliminated. This figure is consider-
ably distinguished from Fig. 1 where the sameB range is
detected. A further investigation shows that for a narrow

FIG. 7. Asymptoticy plotted against phasew
for different frequencies of the perturbation.~a!
V51/3, B512.1, and a50.065; ~b! V54,
B57.15, anda50.1; ~c! V57, B510.6, and
a50.09. In each case, regular motion can be
found in a large interval ofw indicating that
phase control is effective for different frequencies
of the second forcing.
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range of phase all of the three attractors together can be
controlled, while in a relatively widew range we can rule out
chaos from two attractors.

In order to further demonstrate the effect of the phase
difference on controlling chaos, we have studied the phase
diagram in~a,B,w! three-dimensional parameter space, but
plot only the projection of the results in theB-a plane in Fig.
6. Figure 6 was produced in the following way. First we fix
w50 and specify the bifurcation of the system in theB-a
plane. The shaded and the black regions are chaotic regions
~including the periodic windows! while the blank region rep-
resents the regular state, in the sense of Fig. 4, which leaves
the shaded region by inverse period doubling. Then we
changew to obtain a minimuma with respect tow at which
the system can leave chaos by inverse period doubling for a
givenB. We plot the minimuma for eachB by the boundary
of the black region. Thus the blank and shaded regions to-
gether are the projection of all regular region~connected to-
pologically! in B-a-w space to theB-a plane. A remarkable
feature is that the black region is considerably contracted
from the shaded region and thus the thresholda of taming
chaos can be very much reduced when the phase difference
is taken into account.

In the above discussion, we considerV53v only. Nu-
merical simulations show that the features mentioned above
are kept in the general case ofV5vq/p with p andq being
some incompensable integers. In Fig. 7 we show the bifur-
cation diagram ofV51/3 ~a!, 4 ~b!, and 7~c!. In Fig. 7~a!,
we need to investigate only the range ofwP~0,2p/3!, due to
the symmetry property. From Fig. 7, it is obvious that in
each case there is a wide range ofw in which chaotic motion
can be converted to regular motion. Thus, phase control at
weak second forcing is rather effective and can be applied
generally.

To get a general idea about the influence of the frequency
of the second forcing, we investigate the behavior of the
leading Lyapunov exponent versus perturbative frequency.
In Fig. 8~a!, we show the Lyapunov exponent versusV for

w50. Significant reduction of the value ofl is observed asV
is switched to some resonant frequencies or in their neigh-
bor. This feature has been mentioned by several authors
@7,8#. However, the influence of the phase difference onl for
different frequencies has never been investigated to our
knowledge. For example, as we takew52p/3, thel-V curve
in Fig. 8~b! becomes rather different from Fig. 8~a!. In Fig.
8~c!, we plot thelmin-V curve, wherelmin is the leading
Lyapunov exponent minimal with respect tow. We find that
lmin is switched to negative in the very largeV region con-
sidered except in the plateau nearV51. The plateau can be
easily understood since atV51 the second forcing has the
same frequency as the first one; then the small second forc-
ing plays only a trivial role in modifying the amplitude and
inducing a phase shift in the single-frequency forcing, the
latter effect plays no role for the bifurcation figure. There-
fore, the dynamics of the system is not significantly changed
aroundV'v.

To end this section, we present some result about the
injecting energy of the perturbation. The injecting energy is
defined asE15* 0

TẋB cosvt dt, E25* 0
TẋaB cos~Vt1w)dt.

In Fig. 9~a!, we plot the injecting energy of the second forc-
ing versus phasew at V54, B57.15, anda50.1. From nu-
merical simulation we know that in the range 0.6,w,4.9 the
system is converted to regular motion. It is interesting to see:
~i! the absolute value of the input energy of the second forc-
ing is considerably smaller than that of the first forcing@for
the energy of the first forcing, see Fig. 9~b!#, then we can
adjust small energy perturbation to control chaos induced by
large energy driving.~ii ! The input energy of the second
forcing may be positive, negative, or vanishing while that of
the first forcing is definitely positive. Therefore, it may hap-
pen that one can control chaos without any energy cost, or
even with some energy gain.

III. INTERMITTENCY AND BREATHER

In the above section, we discuss the effect of phase on
suppressing chaos under exact resonance conditions. How-

FIG. 7 ~Continued!.
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ever, in experiments we cannot fit the resonance exactly, so
there is unavoidable detuning between the two frequencies of
the forcings. How a slight detuning influences the system
dynamics is an important problem from a practical point of
view; that is the main concern of this section.

First, we assumeV0/v to be rational and the frequency of
the second forcingV5V01DV has a small deviation
DV ~uDVu!V! from the resonance. This detuning introduces
an actual phase evolutionw(t)5w1DVt in Eq. ~2!. In Fig.
10, we plot the time evolution of the system atB58.85,
a50.075,V053v53, DV51/3000, andw50; data are ob-
tained on the same surface of section as in Sec. II. In certain
time intervals the system moves ‘‘regularly’’ while in other
time segments it moves ‘‘chaotically,’’ and after a time length
T52p/DV, the motions are repeated. In ‘‘regular’’ segments,

the motion is quasistatically ‘‘periodic’’ and stable against
perturbations; however, in ‘‘chaotic’’ segments a very small
fluctuation will result in considerable changes of the trajec-
tories. Therefore, in ‘‘regular’’ segments we can predict the
system state, while in ‘‘chaotic’’ segments we cannot do so.
Though the general dynamic feature of the system repeats
after a ‘‘period’’T, the actual trajectory does not repeat itself
after the same time length. This behavior can maintain in a
wide range ofDV ~up toDV51/100 in the case of Fig. 10!.
Therefore, by introducing a small detuning from resonant
frequency we find a new stable ‘‘periodic’’~in the sense
stated above! behavior with periodT52p/DV that includes
both regular and chaotic motion in its time evolution. We
identify this stable ‘‘periodic’’ motion as a breather. The re-
semblance of Fig. 10 with Fig. 3 is meaningful. A very small

FIG. 8. The leading Lyapunov exponentl plotted against the frequency of perturbationB58.85,a50.1, ~a! w50; ~b! w52p/3; ~c! lmin
plotted againstV. lmin is the minimuml with respect tow for other given parameters.lmin is almost entirely suppressed below zero except
in the small plateau aroundV51.
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DV introduces a temporaryw, which varies very slowly. As
time goes on, the system evolves at different quasistaticw.
The timet in Fig. 10 corresponds to the control parameterw
in Fig. 3, which underlies the resemblance of the two figures.

It is remarkable that we find an interesting state of the
system in which chaotic motion and regular motion appear
alternatively. This intermittency has an essential difference
from conventional intermittencies. In conventional intermit-
tencies, periodic motion and chaotic motion appear irregu-
larly, and their time intervals cannot be predicted. However,
in our breatherlike intermittency, the time lengths of chaotic
or regular motion are fixed and the time at which chaotic or
regular motion appears can be rather precisely predicted. On
the other hand, this motion is not quasiperiodic since the
adjacent orbits diverge exponentially in the chaotic regions.
There are many experiments reporting controlling chaos in
nonautonomous systems by applying a small second periodic
forcing @12,14#. However, to our knowledge, none of these
experiments succeeded in stabilizing periodic orbits steadily.
On the contrary, some authors declared that the periodic or-
bits can be maintained only for a certain time length; avoid-
able shifts of the bifurcation figure always destroyed the sta-
bility of the control. Now, the reason for this instability is
clear to us; it is due to the phase effect and the frequency
detuning. Based on this understanding, Liet al.succeeded in
stabilizing periodic orbits and suppressing chaos by using
nonfeedback control for an arbitrarily long time, by simply
matching the phase of the two forcings@18#.

In a practical situation the phase is often subject to noise
impacts. Let us assume the phase fluctuates as

ẇ5h~ t !, ~3!

whereh(t) is Gaussian white noise, which satisfies

^h~ t !&50,
~4!

^h~ t !h~ t8!&52Dd~ t2t8!,

whereD is the intensity of noise. Numerically, the Gaussian
white noise h(t) is generated by using the Box-Muller
method@17#. In Fig. 11, we plot the time evolution of the
system withD50.007 and all other parameters given in Fig.
10 exceptDV50. Now, one can still find breathers of regular
or chaotic motions~of course, in the regular parts, some fluc-
tuations naturally induced by noise are observed and high
periodicity is wiped by noise as well!, but the alternative
appearances of both motions are no longer periodic and the
changes from one type of motion to another occur irregu-
larly. This behavior resembles conventional intermittency.
However, the mechanism underlying this intermittency is the
effect of phase and the random walk on the phase; that is
different from the mechanisms of conventional intermitten-
cies. IfD is too large, the regular part may be hidden, and if
D is too small, the system may stay in a certain region~regu-
lar or chaotic! for an extremely long time.

IV. MULTIFREQUENCY SYSTEM

In this section we discuss briefly the effect of phase
in controlling chaos in multifrequency systems. Specifically,
we consider a system driven by two harmonics and sub-
jected to a sinusoidal perturbation. The system is described
by Eq. ~2! with B cosvt1aB cos~Vt1w! replaced by
B1cosv1t1B2cosv2t1a cos~Vt1w!, where a is small in
comparison withBi ~i51,2!. In Fig. 12 we takeB15B2515,
v151, v253, V55. In Fig. 12~a!, we show the bifurcation
with respect to amplitudea at a fixed phasew50. In the
given range ofa, one can see only chaotic motion~of course,
period windows must be found by fine resolutions!. The
small perturbation cannot suppress chaos at the given phase.
In Fig. 12~b!, we changew, while fixing a to a50.9, which
is much smaller thanB1 ,B2 and is also much smaller than
the largesta in ~a! ~a54!; a wide regular region emerges in
the phase range fromw'1 to 3.5. In this region, the system
leaves the chaotic region to periodic motion via inverse pe-

FIG. 8 ~Continued!.
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riod doubling. At even smallera ~down toa50.4! we can
still control chaos for certainw. Note in this case that the
third perturbation is incomparably smaller than the two driv-
ing forces. Thus the phase control of chaos seems to be ef-
fective as well in multiharmonic systems.

In fact, an extension of this study to systems with more
forcings where more phases can be adjusted will be of much
interest. We will go further in this direction in our future
works.

In conclusion, we would like to emphasize the following:
controlling chaos in systems similar to Eq.~2! was investi-

gated in a number of works@7–9,11,15#. In this paper we
thoroughly studied the role played by the phase difference of
the two sinusoidal forces and found that the phase term plays
a very important role in controlling chaos. Rajasekar@20#
studied the effect of the phase difference in controlling chaos
by the Melnikov method and numerical simulations, but his
discussion focused on the caseV5v @as we stated previ-
ously, applying the second sinusoidal force withV5v in Eq.
~2! is equivalent to merely changing the amplitude and the
initial phase of the first force, and can only shift, not change,
the global bifurcation diagram of the system#. Moreover, in

FIG. 9. The injected energy of the first forcing~a! and second forcing~b! plotted againstw. V54, B57.15, anda50.1.
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FIG. 10. y plotted against timet for B58.85,a50.075,V5V01DV, V053v53,DV51/3000, andw50. The resemblance of this figure
with Fig. 3 is remarkable.

FIG. 11. y plotted againstt for B58.85,a50.075,V53, D50.007, andw50.
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experiments of controlling chaos in systems like Eq.~2!, an
instability of controlling was reported@12#. Now, based on
the understanding of the phase effect, we can explain the

mechanism underlying this instability phase shift caused by
small frequency detuning. A way to overcome this instability
difficulty can be suggested, and proven to be effective.
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